伏组件作为光伏系统中核心组成部件,其质量的优劣将严重影响到光伏系统的发电量和寿命。只有原材料选择正确,原材料匹配佳,封装技术良好,才能使晶硅电池片安全稳定,保证光伏组件良好的长期发电性能。
玻璃位于光伏组件正面的外层,在户外环境下,直接接受阳光照射,并隔离水气、杂质等。一般的光伏组件使用的玻璃为镀膜钢化玻璃。钢化玻璃是将玻璃加热到接近融化的温度,一般在600℃-650℃时处于粘性流动状态,保温一定时间,然后经过快速冷却即淬火,使玻璃内部产生很大的张应力,尤其是玻璃表面。张应力存在于玻璃内部,当玻璃破碎时,能使玻璃保持一体而不会碎裂,通常钢化玻璃很难被外力正面击碎,而由于张应力的原理,使得钢化玻璃在接触尖锐物理撞击或者磕碰边角时很容易碎裂。这在生产和使用过程中要尤其注意。
光伏组件背板的结构由基材的两面加功能层组成。光伏组件背板通过自身优良的物理性能、耐老化性能、隔绝空气和水分的性能,绝缘性能使组件成为一个有较好物理机械强度的整体并且内部结构长时间不受外界有害因素影响。从而对太阳能电池组件提供保护和支撑。此外,由于加工工艺的要求,背板还要在层压时与EVA牢固粘合,还要与粘结接线盒的硅胶牢固粘合,自身两层EVA融化要彻底交融。
光伏电池封装胶膜(EVA)是一种热固性有粘性的胶膜,用于放在夹胶玻璃中间(EVA是Ethylene乙烯Vinyl乙烯基Acetate醋酸盐的简称)。由于EVA胶膜在粘着力、耐久性、光学特性等方面具有的优越性,使得它被越来越广泛的应用于电流组件以及各种光学产品。太阳能光伏发电固化后的EVA能承受大气变化且具有弹性,它将晶体硅片组“上盖下垫”,将硅晶片组包封,并和上层保护材料玻璃,下层保护材料。
EVA是一种热融胶粘剂,常温下无粘性而具抗粘性,以便操作,经过一定条件热压变发生熔融粘接与交联固化,此时几乎完全透明。与玻璃粘合后能提高玻璃的透光率,起着增透的作用。
EVA检测内容:外观检验、厚度检验、透光率检验、交联度检验。其中,交联度检测数据将直接反映组件封装的可靠性。
EVA发展趋势:国产化、低价、高增益性、多样性等。
光伏组件边框能够起到固定、密封太阳能电池组件、增强组件强度,延长使用寿命,便于运输、安装的作用。通常采用铝材制造。吕边框表面有抗氧化处理,工艺有阳极氧化、电泳、粉末喷涂、PVDF、喷砂等几类。
边框的检测包括:抗拉强度、延展性、耐盐雾腐蚀性、耐氨气腐蚀性、弯曲度等。边框未来发展的趋势包括塑料边框,具备更轻质化的优势。异形边框,具备个性化定制、适应多种安装条件的优势。
以上分析了组成光伏组件的重要原材料的相关内容,那么对于整体组件在封装成后,如何把控质量与技术呢?这就会出现各种各样的问题。目前,组件质量的把控能力,主要通过样品的测试结果来反映。组件的发电量会根据接受的辐照度呈现不规则线性变化。通过低辐照度下电性能测试,可以有效了解产品是否适合在日照条件较差的地区使用。由于组件老化、缺陷或者环境遮蔽会导致过热现象。通过热斑测试,可以确定组件耐热斑热效应的能力。在温度较高地区容易出现由于接地条件差异和电势差导致的性能衰减。通过PID电致衰减测试,可以研究组件及系统电势对组件性能衰减的影响。在保证零部件可靠性的同时,组件的密封性能将直接影响封装在组件的使用寿命。通过EVA剥离强度测量,定量测量组件封装强度,可有效避免因封装工艺的缺陷导致的损失。无论封装技术如何发展,都必须保证玻璃与EVA之间的剥离强度不能低于40N/CM。否则,组件的可靠性将成为大的问题。
在以风能、光伏电站等为代表的新能源大潮到来之际,研发优质光伏技术、控制产品质量,在保证光伏发电量和使用寿命上,优质企业必将上升成为行业内的领导者。届时,“光伏号”列车才能真正驶上良性发展的正轨。